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Cluster precision cosmology
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±10% mass error

only as precise as our knowledge of cluster physics



“Nuisance parameters”

AGN and star formation feedback — Chandra bubbles, shocks around them

Radiative cooling — match simulations with observed density profiles;

high-res XMM RGS and Astro-H spectra

ICM clumpiness (related to cooling) Chandra ultra-deep observations

Turbulence, bulk motions — Astro-H details in this talk

Thermal conduction — T maps, profiles details in this talk

Viscosity — cold front stability

Electron-ion non-equipartition — shock fronts

Magnetic fields, cosmic ray electrons (mostly radio) match radio with X-ray

Cosmic ray protons — Fermi upper limit

Helium abundance — SZ / X-ray



100 kpc

Cold fronts in A2142

• KH instabilities — await MHD simulations to constrain effective viscosity
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Electron-proton equilibration timescale from shock front s

3D

τep = Coulomb

τep ≪ Coulomb

1600 km/s

• 95% confidence: τep ≪ Coulomb

Bullet cluster shock

MM 06
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New constraints on large-scale heat conduction

(B. Russel 2014 PhD thesis; Russell, MM, ZuHone in prep.)



Observational constraints on ICM conductivity so far

• Conduction across cold fronts must be strongly suppressed (Ettori & Fabian 2000, ...)

• Stripped tails of infalling groups survive→ strong suppression (Eckert et al. 14)

— both can be explained by magnetic draping

• Small-scale temperature structure in mergers, e.g., A754→

suppressed by ×10 – 40 (Markevitch et al. 03)

— can be a selection effect (pick thermally isolated regions)

Cluster-wide, large-scale thermal conduction?



Cluster temperature profiles — radial decline
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• XMM, Suzaku results similar (Molendi & Leccardi 08; George et al. 09; ...)



A2029, a prototypical hot relaxed cluster
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If the cluster were a solid body ...

r 2500 r 500
0 Gyr

1
2

8

no cooling, 0.3 Spitzer isotropic conduction

• conduction erases T gradient

B. Russell 14



If the cluster is hydrostatic ...

r 2500 r 500
0 Gyr
1
8

no cooling, 0.3 Spitzer isotropic conduction, allow gas redistribution

B. Russell 14

• T gradient maintained because of cluster compression

(result very similar to McCourt 13)



Evolution of gas density profile
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Evolution of gas density profile

r 2500 r 500

0 Gyr
1

8

cooling, 0.3 Spitzer isotropic conduction

B. Russell 14

• for r > 0.5 r 2500, result doesn’t depend on details of heating and feedback in cool core



Observed differential f gas profiles in hot relaxed clusters
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T > 5 keV, z < 0.25 relaxed clusters • very low scatter!



• The sample of relaxed clusters should contain clusters of different “ages”
(time since last major disturbance)

• If κ , 0, clusters of different age should have different f gas

= scatter in the sample



Evolution of differential f gas profile with conduction

B. Russell 14

•

• Mantz 14

30% Spitzer

•

•

0 Gyr

1

•

•

•

1

2
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Evolution of differential f gas profile with conduction
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Evolution of differential f gas profile with conduction

B. Russell 14Russell 14
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Conclusions on conduction

• Under simple assumptions, κ > 5 – 10% Spitzer (in the cluster radial direction)

contradicts the observed lack of scatter in f gas at r ∼ r 2500 in hot, relaxed clusters

• Cosmological simulations including heat conduction and the relaxed cluster

selection as in Mantz 14 may place stronger constraints



ICM turbulence (direct measurements)





Astro-H instruments
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Astro-H instruments (relevant for clusters)

Soft X-ray Spectrometer Soft X-ray Imager Hard X-ray Imager

(SXS) (SXI) (HXI)

Detector technology microcalorimeter CCD Si / CdTe cross-strips

Effective area 210 cm2 at 6 keV 300 cm2 at 30 keV 360 cm2 at 6 keV

Energy range 0.4 – 12 keV 0.3 – 12 keV 5 – 80 keV

Energy resolution, FWHM 5 eV < 200 eV 2 keV

Angular resolution, HPD 1.2′ 1.2′ 1.7′

FOV 3′ × 3′ (6×6 pixel array) 38′ × 38′ 9′ × 9′



Can resolve turbulently broadened Fe line:

5 eV resolution at E = 6.5 keV → σ LOS = 100 km/s

100 ks simulation of Perseus core (expected exposure much longer)



Likely early cluster projects (Astro-H White Paper, arxiv:1412.1176)

• Perseus core: turbulence, bulk motions, rare elements, 3.5 keV line

• Centaurus: line-rich cool core, cooling gas EM distribution

• M87: velocity of SW arm

• A2029, the most relaxed cluster: constrain turbulence at r 2500

to σ LOS < 150 km/s (∼ 2% of thermal pressure)

• Power spectrum of turbulence in Coma



Power spectrum of turbulence
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• Dissipation scale, power-law slope→ plasma microphysics (can’t measure)

• Injection scale + normalization (can measure)→ (a) energy flow down the

cascade, (b) diffusion and mixing rate (for metals, entropy, cosmic rays, ...)



Coma is the best cluster to study turbulence

A simple system:

• No cooling flow, a big flat core→ turbulence should develop in an isotropic,

textbook fashion on all scales

• No central AGN→ turbulence is driven only by cluster mergers

A well-studied radio halo — can estimate efficiency of turbulent acceleration of

cosmic rays



Expected constraints on power spectrum

• fit line width and “structure function”

(average velocity difference as a function of angular separation)

200 kpc

Coma
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but ... with 5 eV resolution for the first time, expect surprises
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