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“Nuisance parameters”

AGN and star formation feedback — Chandra bubbles, shocks around them

Radiative cooling — match simulations with observed density profiles;
high-res XMM RGS and Astro-H spectra

ICM clumpiness (related to cooling) Chandra ultra-deep observations
Turbulence, bulk motions — Astro-H

Thermal conduction — T maps, profiles

Viscosity — cold front stability

Electron-ion non-equipartition — shock fronts

Magnetic fields, cosmic ray electrons (mostly radio) match radio with X-ray
Cosmic ray protons — Fermi upper limit

Helium abundance — SZ/ X-ray



=1
Cold fronts in A2142

e r 100 kpc

e KH instabilities — await MHD simulations to constrain effective viscosity
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Electron-proton equilibration timescale from shock front

Bullet cluster shock

Tep << Coulomb

Tep = Coulomb

-—

1600 km/s

0
x, arcsec

MM 06
e 95% confidence: 7, << Coulomb
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New constraints on large-scale heat conduction

(B. Russel 2014 PhD thesis; Russell, MM, ZuHone in prep.)



Observational constraints on ICM conductivity so far

e Conduction across cold fronts must be strongly suppressed (Ettori & Fabian 2000, ...)

e Stripped tails of infalling groups survive — strong suppression (Eckert et al. 14)

e Small-scale temperature structure in mergers, e.g., A754 —»
suppressed by x10 — 40 (Markevitch et al. 03)

Cluster-wide, large-scale thermal conduction?



Cluster temperature profiles — radial decline

ASCA (Markevitch et al. 98)
Chandra (Vikhlinin et al. 05)

e XMM, Suzaku results similar (Molendi & Leccardi 08; George et al. 09; ...)



A2029, a prototypical hot relaxed cluster

Vikhlinin et al. 06



If the cluster were a solid body ...

no cooling, 0.3 Spitzer isotropic conduction

Temperatures: A2029 30%
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B. Russell 14

e conduction erases T gradient



If the cluster is hydrostatic ...

no cooling, 0.3 Spitzer isotropic conduction, allow gas redistribution

Temperatures: A2029 30%
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e T gradient maintained because of cluster compression

(result very similar to McCourt 13)



Evolution of gas density profile

no cooling, 0.3 Spitzer isotropic conduction

Local fgas: A2029 30%
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Evolution of gas density profile

cooling, 0.3 Spitzer isotropic conduction

Local fgas: A2029 30%
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e forr > 0.5 r,500, result doesn’t depend on details of heating and feedback in cool core



f 4as Profiles in hot relaxed clusters

Observed differential

T >5keV, z <0.25 relaxed clusters
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e The sample of relaxed clusters should contain clusters of different “ages”
(time since last major disturbance)

o |f clusters of different age should have different f g,



Evolution of differential  f 4,5 profile with conduction

30% Spitzer

Bin Ratios: A2029 30%
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Evolution of differential  f 4,5 profile with conduction

20% Spitzer

Bin Ratios: A2029 20%
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Evolution of differential  f 4,5 profile with conduction

10% Spitzer

Bin Ratios: A2029 10%
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Evolution of differential  f 4,5 profile with conduction

5% Spitzer

Bin Ratios: A2029 5%
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Conclusions on conduction

e Under simple assumptions, (in the cluster radial direction)
contradicts the observed lack of scatter in fgas at r ~rasgp In hot, relaxed clusters

and the relaxed cluster
selection as in Mantz 14



ICM turbulence (direct measurements)
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Astro-H instruments

SXT-S + SXS (with CBF) —

HXT + HXI (two mirros)
SGD (compton mode)
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Astro-H instruments (relevant for clusters)

Soft X-ray Spectrometer

(SXS)

Soft X-ray Imager

(SXI)

Hard X-ray Imager

(HXI)

Detector technology
Effective area

Energy range

Energy resolution, FWHM
Angular resolution, HPD

FOV

microcalorimeter
210 cm? at 6 keV

0.4 -12 keV

1.2

3’ x 3’ (6x6 pixel array)

CCD

300 cm? at 30 keV
0.3-12 keV

< 200 eV

1.2

38’ x 38’

Si/ CdTe cross-strips
360 cm? at 6 keV
5—-80 keV

2 keV

1.7

9’'x 9




Can resolve turbulently broadened Fe line:

5 eV resolution at E = 6.5 keV — o os =100 km/s

Perseus cluster
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100 ks simulation of Perseus core (expected exposure much longer)



Likely early cluster projects  (Astro-H White Paper, arxiv:1412.1176)

Perseus core: turbulence, bulk motions, rare elements, 3.5 keV line
Centaurus: line-rich cool core, cooling gas EM distribution
M87: velocity of SW arm

A2029, the most relaxed cluster: constrain turbulence at r>509
to oLos <150 km/s (~ 2% of thermal pressure)

Power spectrum of turbulence in Coma



Power spectrum of turbulence

100 kpc
200 kpc
300 kpc
500 kpc
1000 kpc

e Dissipation scale, power-law slope — plasma microphysics

e Injection scale + normalization (can measure) — (a) energy flow down the
cascade, (b) diffusion and mixing rate (for metals, entropy, cosmic rays, ...)



Coma is the best cluster to study turbulence

A simple system:

e No cooling flow, a big flat core — turbulence should develop in an isotropic,
textbook fashion on all scales

e No central AGN — turbulence is driven only by cluster mergers

A well-studied radio halo — can estimate efficiency of turbulent acceleration of
cosmic rays



Expected constraints on power spectrum

e fit line width and “structure function”
(average velocity difference as a function of angular separation)

5% 100 ks pointings

100 kpc

200 kpc
big cross 300 kpc

500 kpc

1000 kpc

spectrum normalization

200 kpc

ZuHone et al. 15 injection scale



but ... with 5 eV resolution for the first time, expect surprises
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