
Extended X-ray object ejected from the PSR B1259-63/LS 2883 binary

Oleg Kargaltsev (George Washington University)
George Pavlov (Pennsylvania State University)
Jeremy Hare (George Washington University)
Blagoy Rangelov (George Washington University)

High-mass binary LS 2883 with PSR B1259-63

(Credit: NASA's Goddard Space Flight Center/Francis Reddy)

X-ray flux varies with orbital period. **Gamma-ray** flashes near periastron, apparently when the pulsar intreacts with the decretion disk during 2nd passage.

Fast-spinning, massive $(M\sim30\ M_{\odot},\ L=6\times10^4L_{\odot})$ star with a strong wind.

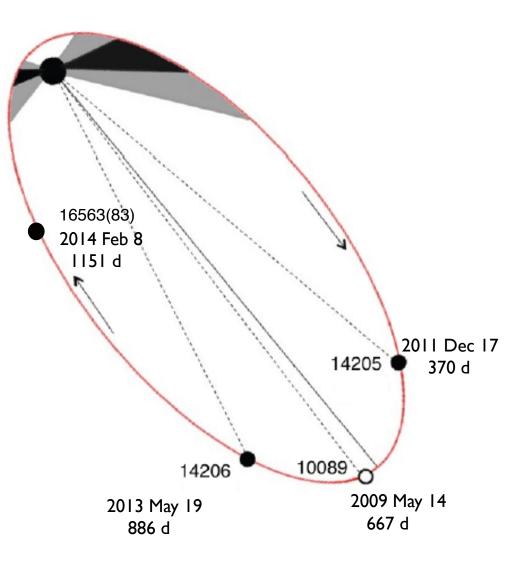
The **wind** is dense and slow in the **decretion disk**, tenuous and fast outside the disk.

Pulsar B1259-63:

Spin period = 48 msEdot = $8 \times 10^{35} \text{ erg/s}$ Spin-down age = 330 kyrShould emit pulsar wind

Orbit:

3.4 yr orbital period

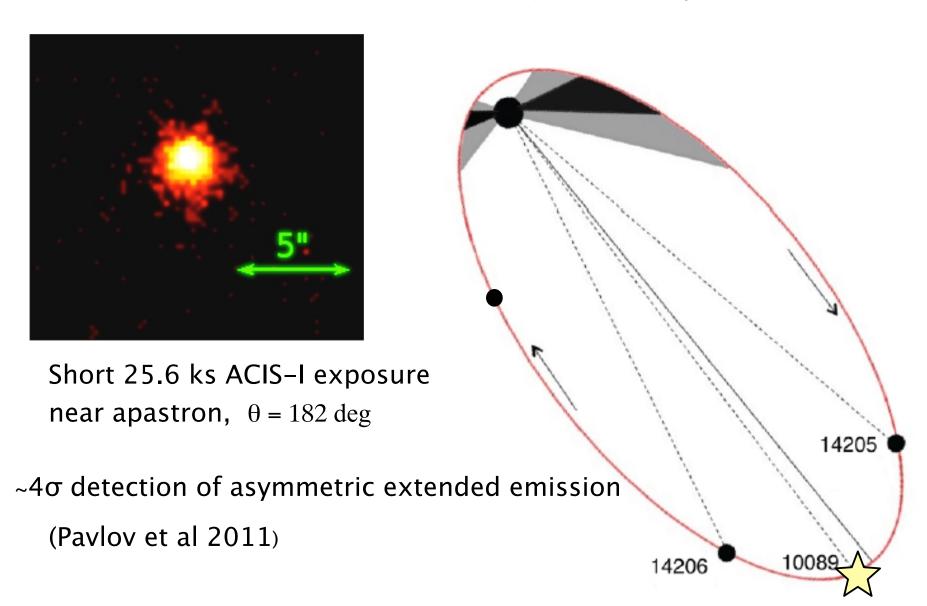

7 AU (3 milliarcsec) max. separation 0.87 eccentricity

Imaging observations with Chandra ACIS

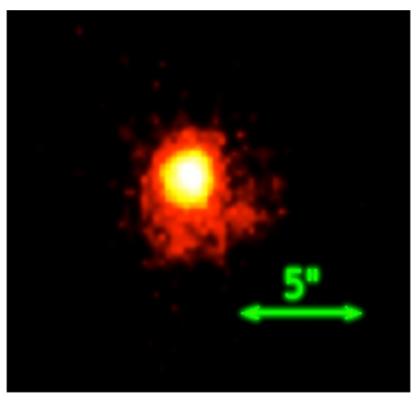
4 observations, May 2009 - Feb 2014

ObsID	MJD	θ^{a}	$\Delta t^{ m b}$	Exp.c	Cts^d
		\deg	days	ks	
10089	54965	182	667	25.6	1825
					61
14205	55912	169	37 0	56.3	6551
					343
14206	56431	192	886	56.3	4162
					144
new^{i}	56696	221	1151	57.6	6257
					58

^aTrue anomaly counted from periastron.

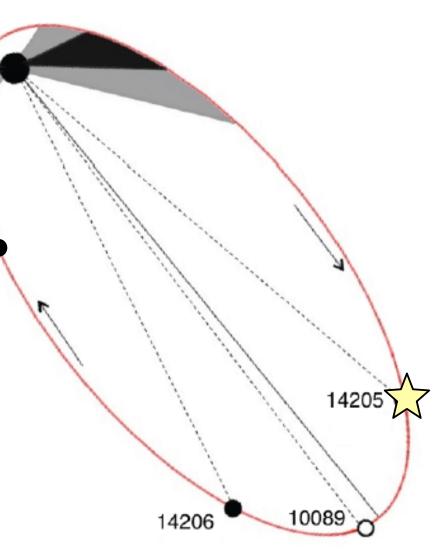


^bDays since latest preceded periastron.

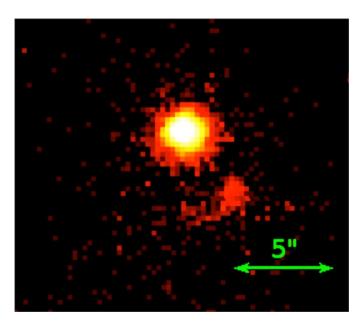

^cExposure corrected for deadtime.

^dTotal (gross) counts.

1st Observation (2009 May 14)

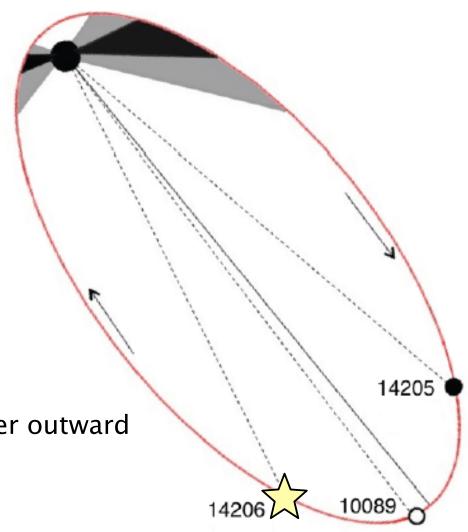


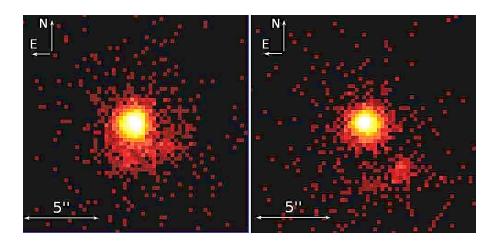
2nd Observation (2011 Dec 17)



56.3 ks ACIS-I exposure before apastron, $\theta = 169 \text{ deg}$

Clear asymmetric extended emission



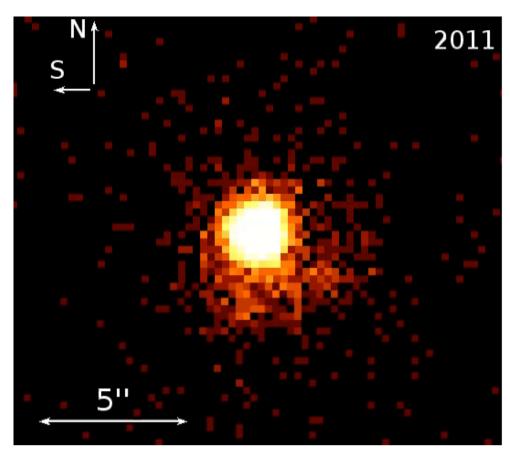

3rd Observation (2013 May 19)

56.3 ks ACIS–I exposure after apastron, $\theta = 192 \text{ deg}$

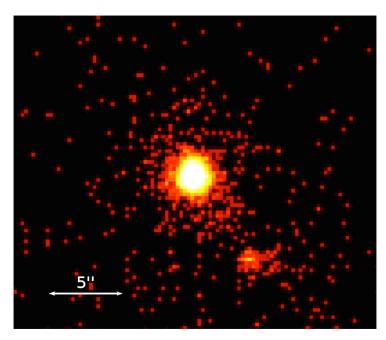
Extended emission moved further outward

2nd and 3rd observations compared

 $1.8' \pm 0.5'$ shift

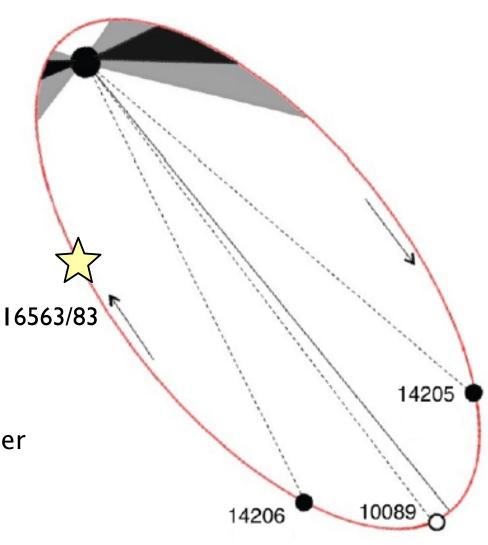

corresponds to the apparent proper motion

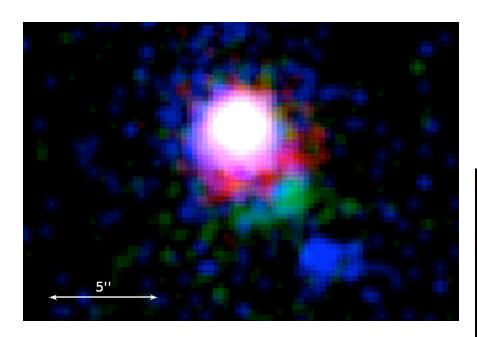
$$\mu = 1.27 \pm 0.35 \text{ arcsec yr}^{-1}$$


$$V = (0.046 +/- 0.013)c$$

at
$$d = 2.3 \text{ kpc}$$

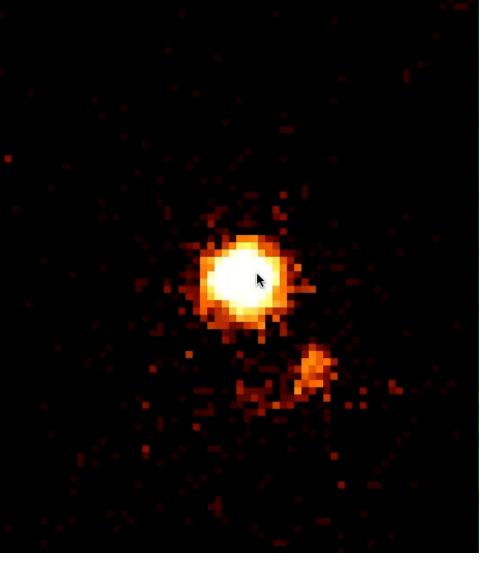
(Kargaltsev et al. 2014)



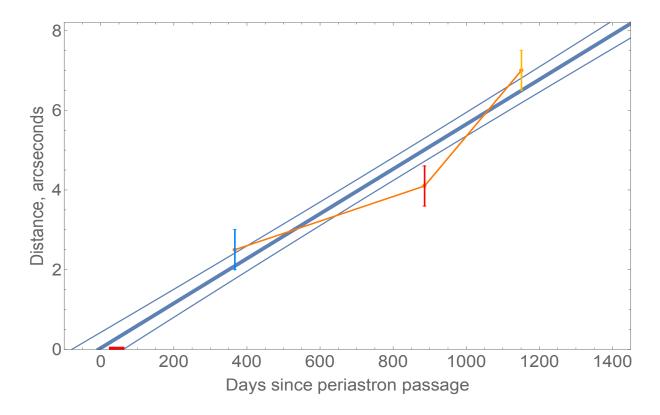

4th Observation (2014 February 8 - 9)

57 ks ACIS-I exposure approaching periastron

Extended emission moved farther from the binary, apparently faster than expected from the previous 2 observations


Between 3rd and 4th observations the extended structure moved by $2.5'' \pm 0.5''$.

This corresponds to the apparent proper motion


$$V=(0.13\pm0.03)c$$
 at d = 2.3 kpc

Apparent acceleration (?) $90\pm40 \text{ cm s}^{-2}$

2nd, 3rd, and 4th observations together:

Distance of the extended source from the binary versus time

Linear fit: V = (0.07 + /-0.01)c

If there is no (or little) acceleration, the cloud was ejected from the binary around periastron of 2010 Dec 14

Luminosities and spectra of extended emission

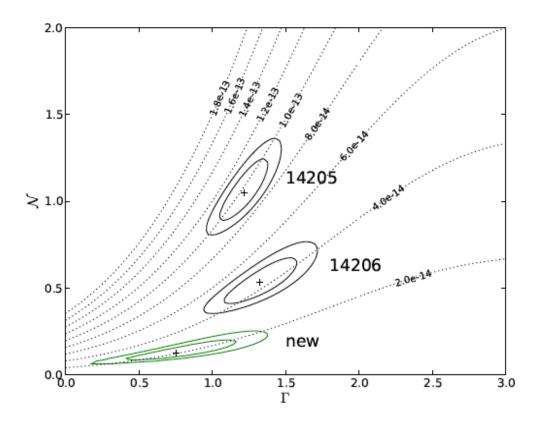
In 3 last observations 0.5 – 8 keV fluxes are

$$F = 8.5 + /-0.5$$
, $3.6 + /-0.4$, $1.9 + /-0.4 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$,

corresponding luminosities $L \sim (0.2 - 1) \times 10^{31} \text{erg/s}$ at d = 2.3 kpc, $\sim 0.7\% - 3\%$ of the binary's luminosity.

The spectra can be fitted with thermal bremsstrahlung,

kT > 6 keV, n ~ 100 cm⁻³, m_{ej} ~ 10²⁸ - 10²⁹ g -- much larger than the mass supplied by the massive star wind during one orbital period, P_{orb} Mdot ~ 10²⁶ (Mdot/10⁻⁸ M_{sol}/yr) g, or a reasonable mass of disk, m_{disk} ~ 10²⁴ - 10²⁶ g.


Kinetic energy $\sim 10^{46} - 10^{47}$ erg, improbably large.

The scenario with hot hadronic plasma cloud radiating via bremsstrahlung does not look plausible.

The spectra are also consistent with power laws, photon indices $\Gamma = 1.2 + /-0.1$, 1.3 + /-0.2, and 0.8 + /-0.4 (no softening!)

Synchrotron radiation?

Confidence contours in Photon Index – Normalization plane

Synchrotron interpretation:

magnetic field $B\sim 80~k_m^{2/7}~\mu G,~~ \mbox{where}~~k_m=\epsilon_{mag}/\epsilon_{kin};$ electron Lorentz factor $\gamma\sim 10^7-10^8$, total magnetic and electron energies $W_m\sim 5\times 10^{40}~k_m^{4/7}$ and $W_e\sim 5\times 10^{40}~k_m^{-3/7}~erg$ in volume $~V\sim 10^{50}~cm^3$.

 $W_m + W_e << P_{orb}$ Edot = 9×10^{43} erg for a broad range of k_m -- the energy could be supplied by the pulsar.

But, if the ejected object were an **e-/e+ cloud**, it would be difficult to explain the fast motion because of the **drag force**, $\mathbf{f} \sim \rho_{amb} \mathbf{v}^2 \mathbf{A}$. Deceleration time

 $t_{dec} \sim (W_m + W_e) v f^{-1} c^{-2} \sim 10 n_{amb}^{-1} (k_m^{4/7} + k_m^{-3/7}) s$, where n_{amb} is the ambient proton number density.

To reduce the deceleration, the e-/e+ cloud must be loaded with a heavy (electron-ion) plasma, but even in this case the ejected mass should be a substantial fraction of the disk mass, if the ejected clump is moving in a stellar wind blown bubble.

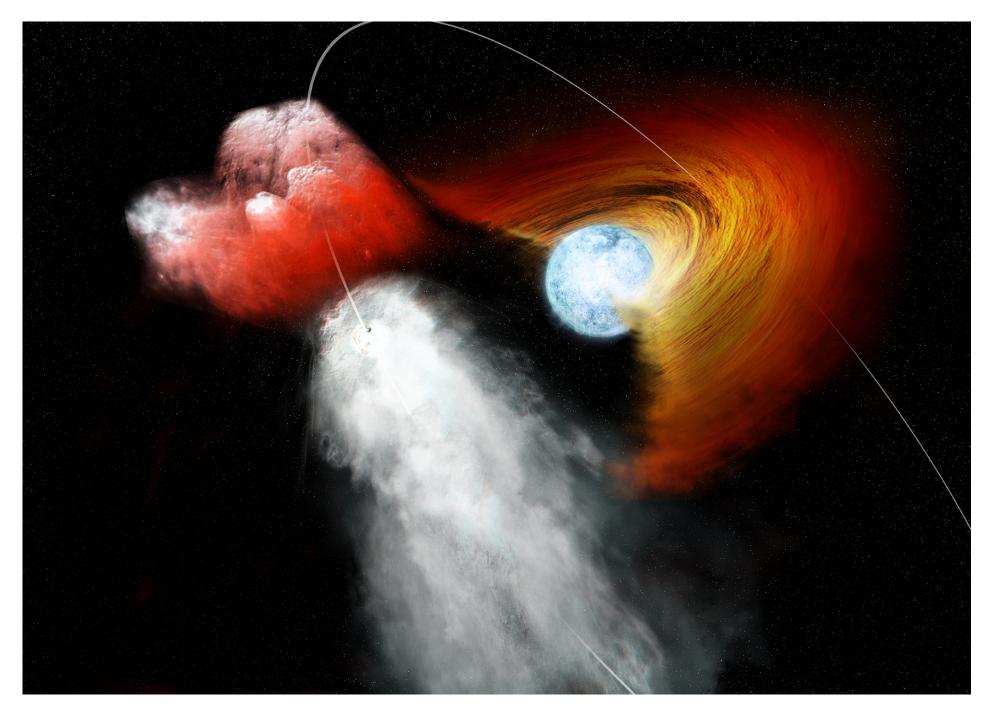
Another hypothesis

Variable termination shock in the circumbinary medium, similar to PWNe around isolated pulsars (Kargaltsev et al 2014)

But, it requires unrealistically high ambient pressure, $p_{amb} \sim 10^{-10}$ dyn cm⁻², to explain the shock size; looks artificial now.

Current explanation: Instead of the companion's wind bubble, ejected clump is moving in the unshocked pulsar wind

More plausible at larger values of $\eta = Edot/(Mdot v_w c) = 4.4 (Mdot/10^-9 M_{\odot}/yr)^{-1} (v_w/1000 km/s)^{-1}$ when the companion's wind is confined by the pulsar wind into a narrow cone, while the unshocked pulsar wind fills the rest of the binary volume.


The X-ray emission is due to synchrotron radiation of the pulsar wind shocked by the collision with the clump.

X-ray luminosity $L_{X,cl} = \xi_X \text{ Edot } (r_{cl}/2r)^2, \xi_X \sim 1.5 \times 10^{-3}$

The interaction with unshocked pulsar wind with ejected clump can also accelerate the clump: $vdot \sim p_{pw} A m_{cl}^{-1}$.

 $m_{cl} \sim 10^{21}$ g for the apparent (low-significance) estimated acceleration.

The clump could be ejected due to interaction of the pulsar with the decretion disk. When the pulsar enters the dense disk, a shock is created, with a radius exceeding the disk's vertical size \rightarrow Disruption of the disk in the first passage, further fragmentation in the second passage, γ -ray flares from shocked pulsar wind, entrainment of clumps in the pulsar wind, then acceleration by the pulsar wind ram pressure to \sim 0.1 c.

Artist interpretation: NASA/CXC press release

Summary

- We discovered a new phenomenon: Ejection of an X-ray emitting clump from a high-mass γ -ray binary with a velocity $v \sim 0.1c$ and a hint of acceleration.
- The clump's luminosity faded with time but the power-law-like spectrum ($\Gamma \sim 0.8 1.3$) did not show softening.
- The clump was likely ejected due to interaction of the pulsar (pulsar wind) with the equatorial decretion disk of the high-mass star.
- We suggest that the clump is moving in the unshocked pulsar wind, whose pressure accelerated the clump to the very high speed.
 This scenario requires large η.
 - The most likely emission mechanism is synchrotron radiation of relativistic electrons ($E_e \sim 10$ $100\,\text{TeV}$, B $\sim 10^2\,\mu\text{G}$) of pulsar wind shocked in the collision with clump.
 - We expect a new clump has been ejected during the recent periastron passage (May 2014), new Chandra observations are planned.