Gamma-ray emissions

Giant Shocks in the Fermi Bubbles and the Origin of the Microwave Haze^{3000 lightyears}

Roland Crocker ARC Future Fellow Australian National University

THE AUSTRALIAN NATIONAL UNIVERSITY

Sun

Collaborators

- Geoff Bicknell, RSAA
- Ettore Carretti, Cagliari Observatory
- Andrew Taylor, Dublin Institute for Advanced Studies

Details: Crocker et al. 2015 ApJ, 808, 107; Crocker et al. 2014 ApJL, 791, L20

Fermi data reveal giant gamma-ray bubbles

Fermi Bubbles

Su, Slatyer and Finkbeiner 2010 (ApJ)

- 2 x 10³⁷ erg/s [1-100 GeV]
- hard spectrum, but spectral down-break below ~ GeV in SED, cut-off (?) ~100 GeV
- uniform projected intensity
- sharp edges
- vast extension: ~7 kpc from plane
- \gtrsim few 10⁵⁵ erg
- coincident emission at other wavelengths

Fermi Bubbles

Su, Slatyer and Finkbeiner 2010 (ApJ)

WMAP Haze

Su, Slatyer and Finkbeiner 2010 (ApJ)

Dobler (2012)

Slide credit: D. Pietrobon & K.M. Gorski Planck Collab.

PLANCK images a giant eruption from the heart of the Milky Way

The Galactic haze/bubbles is shown here in PLANCK data from 30-44 GHz

> The same structure at 2-5 GeV as seen by the Fermi Gamma-Ray Space Telescope

Slide credit: D. Pietrobon & K.M. Gorski Planck Collab.

PLANCK images a giant eruption from the heart of the Milky Way

Giant Radio Lobes

Northern Ridge

Galactic Centre Spur

Southern Ridge

Carretti et al. 2013

limb brightening spurs

2.3 GHz **polarized** intensity

Giant Radio Lobes

2.3 GHz **polarized** intensity

Q1. What energizes the outflow?

OR

Q1. What energizes the outflow? SMBH at Sgr A* OR

Q1. What energizes the outflow? SMBH at Sgr A* OR some other nuclear process

Q1. What energizes the outflow? SMBH at Sgr A* OR some other nuclear process

...nuclear star-formation

- The (photon) Eddington luminosity of Sgr A^{*} (4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s
- Star formation in the Galactic Centre at a rate ~0.05 M_{Sun}/yr ... the Galactic Centre is not a Starburst
- This injects mechanical power (supernova explosions, stellar winds) of
 - $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$
 - $= 3 \times 10^{40} \text{ erg/s}$

- The (photon) Eddington luminosity of Sgr A^{*} (4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s
- Star formation in the Galactic Centre at a rate ~0.05 M_{Sun}/yr ... the Galactic Centre is not a Starburst
- This injects mechanical power (supernova explosions, stellar winds) of
 - $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$
 - $= 3 \times 10^{40} \text{ erg/s}$

- The (photon) Eddington luminosity of Sgr A* (4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s
- Star formation in the Galactic Centre at a rate ~0.05 M_{Sun}/yr ... the Galactic Centre is not a Starburst
- This injects mechanical power (supernova explosions, stellar winds) of
 - $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$

- The (photon) Eddington luminosity of Sgr A^{*} (4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s
- ⇒EXPLOSION Star formation in the Galactic Centre at a rate ~0.05 M_{Sun}/yr ... the Galactic Centre is not a Starburst
- This injects mechanical power (supernova explosions, stellar winds) of
 - $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$

- The (photon) Eddington luminosity of Sgr A* (4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s
- ⇒EXPLOSION Star formation in the Galactic Centre at a rate ~0.05 M_{Sun}/yr ... the Galactic Centre is not a Starburst
- This injects mechanical power (supernova explosions, stellar winds) of
 - $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$
 - $= 3 \times 10^{40} \text{ erg/s} \Rightarrow \text{SLOW INFLATION}$

- The (photon) Eddington luminosity of Sgr A* (4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s
- Star formation in the Galactic Centre at a rate ~0.05 M_{Sun}/yr ... the Galactic Centre is not a Starburst
- This injects mechanical power (supernova explosions, stellar winds) of
 - $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$
 - $= 3 \times 10^{40} \text{ erg/s} \Rightarrow \text{SLOW INFLATION}$

- The (photon) Eddington luminosity of Sgr A* (4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s
- Star formation in the Galactic Centre at a rate ~0.05 M_{Sun}/yr ... the Galactic Centre is not a Starburst
- This injects mechanical power (supernova explosions, stellar winds) of
 - $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$
 - = 3×10^{40} erg/s \Rightarrow SLOW INFLATION

2.7 GHz radio data (unsharp mask, 9.4`) Pohl, Reich & Schlickeiser 1992

2.7 GHz radio data (unsharp mask, 9.4`) Pohl, Reich & Schlickeiser 1992

Ring collimates outflow outflow ablates cold gas

HESS TeV (Aharonian et al 2006)

Ring collimates outflow outflow ablates cold gas

HESS TeV (Aharonian et al 2006)

Q2. What is the radiation mechanism?

OR

Q2. What is the radiation mechanism? 'leptonic': Cosmic ray electrons/Inverse Compton emission OR

Q2. What is the radiation mechanism? 'leptonic': Cosmic ray electrons/Inverse Compton emission OR

'hadronic': Cosmic ray protons/gas collisions

Hadronic Scenario

Crocker & Aharonian PRL 2011

- Bubbles' gamma-ray luminosity requires a source of protons of power ~10³⁹ erg/s in saturation
- This is the power supplied by nuclear SF to cosmic rays that escape the GC

The Fermi Bubbles as Bubbles

Crocker, Bicknell, Taylor & Carretti 2015, ApJ 808, 107

t/year

t/year

Giant Shocks in the Fermi Bubbles

- nuclear wind...
- Reverse shock where $P_{ram} = P_{pls}$
- Have to incorporate gravity, halo pressure & cooling

• General scenario: adiabatically-expanding

Giant Shocks in the Fermi Bubbles

- nuclear wind...
- Reverse shock where $P_{ram} = P_{pls}$
- Have to incorporate gravity, halo pressure & cooling

• General scenario: adiabatically-expanding

height ~ 1 kpc

Mach num ~ 6

Giant Shocks in the Fermi Bubbles

Range of CR electrons downstream of shock

IC gamma-rays

contact discontinuity

Freely-expanding wind zone

Haze

GHz radio

Conclusions

With few free parameters our model explains:

- the size of the Bubbles
- the luminosity, spectrum and morphology of the Bubbles' gamma-ray emission
- the luminosity, spectrum and extent of the microwave haze
- the luminosity, spectrum and extent of the microwave haze of the polarised radio lobes