Supervised Neural Networks for Helioseismic Ring Diagram Inversions

Rasha Alshehhi¹ Chris S. Hanson² Laurent Gizon^{2,3,1}

¹Center for Space Science, NYUAD Institute, New York University Abu Dhabi, UAE

²Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany

³Institut für Astrophysik, Georg-August-Universität, Göttingen, Germany

MAX-PLANCK-GESELLSCHAFT

The Solar Subsurface

- Direct imaging is impossible
- Inferences made from observed surface wave field
- Flows cause frequency shifts

HMI Dopplergram^[1]

ヘロト ヘワト ヘビト ヘビト

¹sdo.gsfc.nasa.gov/

Chris S. Hanson Supervised Neural Networks for Ring Diagram Inversions

Ring-Diagram Analysis

Machine Learning Results Summary

Tracked 15°Patch

¹Basu et al. 1999 ²Greer 2015

Chris S. Hanson Supervised Neural Networks for Ring Diagram Inversions

Ring-Diagram Analysis

Machine Learning Results Summary

Tracked 15°Patch

¹Basu et al. 1999 ²Greer 2015

Chris S. Hanson Supervised Neural Networks for Ring Diagram Inversions

イロン イロン イヨン イヨン

¹Basu et al. 1999 ²Greer 2015

Chris S. Hanson Supervised Neural Networks for Ring Diagram Inversions

¹Basu et al. 1999 ²Greer 2015

Chris S. Hanson Supervised Neural Networks for Ring Diagram Inversions

イロト イロト イヨト イヨト

$$u_{x}(z_{t}) = \sum_{n,\ell} c_{n,\ell}(z_{t}) U_{x}^{n,\ell}$$
$$= \boxed{\sum_{n,\ell} \int c_{n,\ell}(z_{t}) \mathcal{K}^{n,\ell}(z)} u_{x}(z) dz \qquad \text{Linear?}$$
(1)

Computationally expensive [31 CPU hrs/CR]

¹Basu et al. 1999 ²Greer 2015

・ロト ・ ア・ ・ ヨト ・ ヨト

Why use machine learning?

- Solves non-linear problems
- Lots of data (>700,000 observations)
- Greatly reduces computational burden
- Replace current procedure

What's involved?

- Supervised Learning
- Preprocessing data
- Model optimization

・ロト ・ 同ト ・ ヨト ・ ヨト

Why use machine learning?

- Solves non-linear problems
- Lots of data (>700,000 observations)
- Greatly reduces computational burden
- Replace current procedure

What's involved?

- Supervised Learning
- Preprocessing data
- Model optimization

・ロト ・ 同ト ・ ヨト ・ ヨト

ML	Train &	Prediction Time [s]	RMS	E (m/s)
	u_x	u_y	u_x	u_y
Lin	< 1	< 1	8.8	7.3
Bay	< 1	< 1	8.8	7.3
DT	19	20	8.8	7.4
RF	39	42	10.5	9.0
KNN	50	35	9.0	7.7
ANN	360	194	8.6	7.3
SVR	61441	47555	8.5	7.3

For $z_t = 10.44 \text{ Mm}$

Black: *u_x*, Red: *u_y* Dashed: Observed, Solid: ML

イロン イロン イヨン イヨン

э

イロト イポト イヨト イヨト

Have we lost some helioseismic signatures? Can we detect Rossby waves (Löptien et al. 2018) in ML?

Did we succeed?

- ML can be used to accurately predict future observations
- Training for all depths: < 5 CPU hrs [using entire SDO obs]
- Predictions for next CR: < 1 CPU sec [old: 31 CPU hrs]

Future: Dopplergram \rightarrow Flows

イロト イヨト イヨト