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Summary

The Solar Subsurface
@ Direct imaging is impossible

@ Inferences made from observed
surface wave field

@ Flows cause frequency shifts

HMI Dopplergramt™

1sdo.gsfc.nasa.gov/
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Why use machine learning?

@ Solves non-linear problems

@ Lots of data (>700,000 observations)
@ Greatly reduces computational burden
@ Replace current procedure
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Why use machine learning?

@ Solves non-linear problems

@ Lots of data (>700,000 observations)
@ Greatly reduces computational burden
@ Replace current procedure

What'’s involved?

@ Supervised Learning
@ Preprocessing data
@ Model optimization
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Preprocessing
UyorUy ) Mode Imputation Feature Feature X(z)
(mode fits) Selection P Scaling Reduction (Reduced mode-fits)
> 90% coverage  Mean Filling  Standardization ~CCA (1 depth)
Artificial Neural Network
Input 1* Hidden 2" Hidden Output
layer layer layer
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ML  Train & Prediction Time [s] RMSE (m/s)

Uy Uy Uy Uy 20

Lin <1 <1 88 73 g

Bay <1 <1 88 73 Es

DT 19 20 88 74 g

RF 39 42 105 9.0 S o

KNN 50 35 9.0 7.7

ANN 360 194 86 73 5

SVR 61441 47555 85 13

5 10 15 20
For z; = 10.44 Mm Depth [Mm]

Black: ux, Red: uy
Dashed: Observed, Solid: ML
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Observed u. Observed u,

AR,

Flows are recovered
Some ‘junk’ not present
in ML

Have we lost

Difference x10
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Have we lost some helioseismic signatures?
Can we detect Rossby waves (Loptien et al. 2018) in ML?

. Observations

Machine Learning

Frequency [nHz]

Frequency [nHz]

o 5 10 15 20 2
Azimuthal order m

510 15 2 2
Azimuthal order m

Chris S. Hanson

25

20 m=4

v— vy [NHZ]

Blue: Observations
Red: ML with 1 CR for training
Green: ML with 10 CR for training
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Did we succeed?
@ ML can be used to accurately predict future observations
@ Training for all depths: <5 CPU hrs [using entire SDO obs]
@ Predictions for next CR: < 1 CPU sec [old: 31 CPU hrs]

Future: Dopplergram — Flows
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