

Explicit IMF By-dependence in highlatitude geomagnetic activity

Lauri Holappa and Kalevi Mursula University of Oulu, Finland

ACADEMY OFFINLAND CINIE OF EXCLUSION

Solar wind-magnetosphere coupling

- IMF B_z-component is the main driver of magnetic reconnection at the magnetopause
- IMF B_y is included in coupling functions like the Newell coupling function, but its effect does not depend on its sign

$$\frac{d\Phi_{MP}}{dt} = v^{4/3} B_T^{2/3} \sin\left(\frac{\theta}{2}\right)^{8/3}$$

$$B_T = \sqrt{B_z^2 + B_y^2}$$
$$\theta = \arctan\left(\frac{B_y}{B_z}\right)$$

- Stronger auroral electrojets for B_y > 0 than for B_y < 0 in winter! [Friis-Christensen et al., 2017; Smith et al., 2017]
- This talk: quantifying the "B_y-effect" using geomagnetic indices

Russell-McPherron effect

- IMF B_z and B_v are not statistically independent
- Negative IMF B_z in GSM coordinate system for IMF $B_y > 0$ in fall and for $B_y < 0$ in spring.

Russell-McPherron effect

 Solar wind driving of the magnetosphere is enhanced for IMF
 B_y > 0 in fall, and for
 B_y < 0 in spring.

Superposed monthly means and standard errors of the Newell universal coupling function $d\Phi_{MP}/dt$ in 1966-2015

Seasonal variation of AL index

- Deep minimum in AL index during winter for $B_y < 0$
- Cannot be explained by the Russell-McPherron effect.
- => Explicit B_y-effect

Explicit B_v-effect in AL index

- In NH winter, for the same value of dΦ_{MP}/dt, B_y > 0 produces a stronger AL-index than B_y < 0.
- Opposite B_y-dependence in NH summer

Explicit B_v-effect in AL index

AL, fall equinox ± 15 days

< でり

 Explicit B_y-dependence is very weak around spring and fall equinoxes.

a) We calculate measured and predicted ratios

$$R_{meas}^{+/-}(AL) = \frac{|AL(B_y > 0)|}{|AL(B_y < 0)|}$$

$$R_{pred}^{+/-}(AL) = \frac{a \cdot d\Phi_{MP}/dt(B_y > 0) + b}{a \cdot d\Phi_{MP}/dt(B_y < 0) + b},$$

includes only the RMP-effect

b) The ratio of these two ratios

 $R_{expl}^{+/-}(AL) = \frac{R_{meas}^{+/-}(AL)}{R_{pred}^{+/-}(AL)}$

quantifies the **explicit** B_v-effect

AL index is about **40-50% stronger for B**_y**>0 than for B**_y**<0** around the winter solstice.

[Holappa and Mursula, JGR, 2018]

UT-variation

- The explicit B_y-effect (in NH) maximizes around 5 UT, i.e., when the Earth's dipole axis points away from the Sun
- ⇒ The explicit B_y-effect maximizes when the auroral region is maximally in darkness
- ⇒ B_y-effect is efficient under low ionospheric conductivity?

Left: Ratio $R_{expl}^{+/-}$ (AL) for different UT hours and months. Right: $R_{expl}^{+/-}$ (AL) averaged over months.

No explicit B_v-effect in AU index

0.8

2

4

6

month

8

8

10

10

12

12

B_v-dependence in the AU index (eastward electrojet) is solely due to Russell-McPherron effect

- IMF B_y is an **explicit** driver of high-latitude geomagnetic activity
- Geomagnetic activity is significantly stronger for
 B_y > 0 than for B_y < 0 in winter
- B_v-effect maximizes at the winter solstice at 5 UT
- B_y affects the westward electrojet but not the eastward electrojet
- IMF B_y is important for space weather predictions
- No physical explanation yet!

B_v-effect in Southern Hemisphere

- K-index of Syowa station in Antarctica
- During SH winter, for the same value of dΦ_{MP}/dt, B_y < 0 produces stronger K-index than B_y > 0.
- B_y-dependence in SH is
 opposite to that in NH

B_v-effect in Southern Hemisphere

 During SH summer, for the same value of dΦ_{MP}/dt, B_y > 0 produces stronger K-index than B_y < 0.

No explicit B_x effect

- There is a correlation between B_y and B_x. Which of the two components is the driver?
- Limiting the amplitude of B_x has almost no effect to the results
- => B_x has only little, if any, explicit effect on high latitude geomagnetic activity

